3.11.18 \(\int \sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^2(c+d x) \, dx\) [1018]

3.11.18.1 Optimal result
3.11.18.2 Mathematica [C] (verified)
3.11.18.3 Rubi [A] (verified)
3.11.18.4 Maple [B] (verified)
3.11.18.5 Fricas [F]
3.11.18.6 Sympy [F]
3.11.18.7 Maxima [F]
3.11.18.8 Giac [F]
3.11.18.9 Mupad [F(-1)]

3.11.18.1 Optimal result

Integrand size = 43, antiderivative size = 217 \[ \int \sqrt {a+b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=-\frac {(A-2 C) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {(a A+2 b B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {(A b+2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {A \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{d} \]

output
-(A-2*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2 
*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos(d*x+c))^(1/2)/d/((a+b*cos(d* 
x+c))/(a+b))^(1/2)+(A*a+2*B*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/ 
2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c 
))/(a+b))^(1/2)/d/(a+b*cos(d*x+c))^(1/2)+(A*b+2*B*a)*(cos(1/2*d*x+1/2*c)^2 
)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(b/(a+b 
))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/d/(a+b*cos(d*x+c))^(1/2)+A*(a+b*c 
os(d*x+c))^(1/2)*tan(d*x+c)/d
 
3.11.18.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 3.33 (sec) , antiderivative size = 385, normalized size of antiderivative = 1.77 \[ \int \sqrt {a+b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\frac {\frac {8 (b B+a C) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {2 (A b+4 a B+2 b C) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}-\frac {2 i (A-2 C) \sqrt {-\frac {b (-1+\cos (c+d x))}{a+b}} \sqrt {\frac {b (1+\cos (c+d x))}{-a+b}} \csc (c+d x) \left (-2 a (a-b) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (-2 a \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )+b \operatorname {EllipticPi}\left (\frac {a+b}{a},i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )\right )\right )}{a b \sqrt {-\frac {1}{a+b}}}+4 A \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 d} \]

input
Integrate[Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2) 
*Sec[c + d*x]^2,x]
 
output
((8*(b*B + a*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, 
(2*b)/(a + b)])/Sqrt[a + b*Cos[c + d*x]] + (2*(A*b + 4*a*B + 2*b*C)*Sqrt[( 
a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/Sq 
rt[a + b*Cos[c + d*x]] - ((2*I)*(A - 2*C)*Sqrt[-((b*(-1 + Cos[c + d*x]))/( 
a + b))]*Sqrt[(b*(1 + Cos[c + d*x]))/(-a + b)]*Csc[c + d*x]*(-2*a*(a - b)* 
EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b) 
/(a - b)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos 
[c + d*x]]], (a + b)/(a - b)] + b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a 
 + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)])))/(a*b*Sqrt[-(a + 
 b)^(-1)]) + 4*A*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/(4*d)
 
3.11.18.3 Rubi [A] (verified)

Time = 1.91 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.06, number of steps used = 18, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.419, Rules used = {3042, 3526, 27, 3042, 3538, 25, 3042, 3134, 3042, 3132, 3481, 3042, 3142, 3042, 3140, 3286, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(c+d x) \sqrt {a+b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx\)

\(\Big \downarrow \) 3526

\(\displaystyle \int \frac {\left (-b (A-2 C) \cos ^2(c+d x)+2 (b B+a C) \cos (c+d x)+A b+2 a B\right ) \sec (c+d x)}{2 \sqrt {a+b \cos (c+d x)}}dx+\frac {A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \int \frac {\left (-b (A-2 C) \cos ^2(c+d x)+2 (b B+a C) \cos (c+d x)+A b+2 a B\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx+\frac {A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {-b (A-2 C) \sin \left (c+d x+\frac {\pi }{2}\right )^2+2 (b B+a C) \sin \left (c+d x+\frac {\pi }{2}\right )+A b+2 a B}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {1}{2} \left (-\frac {\int -\frac {(b (A b+2 a B)+b (a A+2 b B) \cos (c+d x)) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\left ((A-2 C) \int \sqrt {a+b \cos (c+d x)}dx\right )\right )+\frac {A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {(b (A b+2 a B)+b (a A+2 b B) \cos (c+d x)) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-(A-2 C) \int \sqrt {a+b \cos (c+d x)}dx\right )+\frac {A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {b (A b+2 a B)+b (a A+2 b B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-(A-2 C) \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {b (A b+2 a B)+b (a A+2 b B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {(A-2 C) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {b (A b+2 a B)+b (a A+2 b B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {(A-2 C) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {b (A b+2 a B)+b (a A+2 b B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 (A-2 C) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {1}{2} \left (\frac {b (a A+2 b B) \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx+b (2 a B+A b) \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\frac {2 (A-2 C) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {b (a A+2 b B) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+b (2 a B+A b) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 (A-2 C) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {1}{2} \left (\frac {b (2 a B+A b) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {b (a A+2 b B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 (A-2 C) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {b (2 a B+A b) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {b (a A+2 b B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 (A-2 C) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {1}{2} \left (\frac {b (2 a B+A b) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 b (a A+2 b B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 (A-2 C) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3286

\(\displaystyle \frac {1}{2} \left (\frac {\frac {b (2 a B+A b) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+\frac {2 b (a A+2 b B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 (A-2 C) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {\frac {b (2 a B+A b) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+\frac {2 b (a A+2 b B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 (A-2 C) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {1}{2} \left (\frac {\frac {2 b (a A+2 b B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {2 b (2 a B+A b) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 (A-2 C) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {A \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

input
Int[Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c 
 + d*x]^2,x]
 
output
((-2*(A - 2*C)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + 
b)])/(d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + ((2*b*(a*A + 2*b*B)*Sqrt[(a 
+ b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[ 
a + b*Cos[c + d*x]]) + (2*b*(A*b + 2*a*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b 
)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]]) 
)/b)/2 + (A*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/d
 

3.11.18.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3526
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - 
d^2))), x] + Simp[1/(d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^(m - 
 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + (c*C - B* 
d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 
1) - a*c*(n + 2))) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x 
] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f 
*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d 
, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
3.11.18.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(987\) vs. \(2(290)=580\).

Time = 6.00 (sec) , antiderivative size = 988, normalized size of antiderivative = 4.55

method result size
parts \(\text {Expression too large to display}\) \(988\)
default \(\text {Expression too large to display}\) \(1035\)

input
int((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2,x, 
method=_RETURNVERBOSE)
 
output
-A*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*b*cos(1/ 
2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+(-2*a-2*b)*sin(1/2*d*x+1/2*c)^2*cos(1/2* 
d*x+1/2*c)-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2 
+(a+b)/(a-b))^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-El 
lipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a+EllipticE(cos(1/2*d*x+1/2 
*c),(-2*b/(a-b))^(1/2))*b-EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/ 
2))*b)*sin(1/2*d*x+1/2*c)^2+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1 
/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b 
))^(1/2))*a-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+ 
(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a+(sin 
(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/ 
2)*b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-b*(sin(1/2*d*x+1/2*c 
)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticPi( 
cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2)))/(-1+2*cos(1/2*d*x+1/2*c)^2)/(-2* 
b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c 
)/(-2*b*sin(1/2*d*x+1/2*c)^2+a+b)^(1/2)/d-2*B*((2*cos(1/2*d*x+1/2*c)^2*b+a 
-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d 
*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b)) 
^(1/2))*b-EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a)/(-2*b*sin 
(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/...
 
3.11.18.5 Fricas [F]

\[ \int \sqrt {a+b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c 
)^2,x, algorithm="fricas")
 
output
integral((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)* 
sec(d*x + c)^2, x)
 
3.11.18.6 Sympy [F]

\[ \int \sqrt {a+b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\int \sqrt {a + b \cos {\left (c + d x \right )}} \left (A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}\, dx \]

input
integrate((a+b*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x 
+c)**2,x)
 
output
Integral(sqrt(a + b*cos(c + d*x))*(A + B*cos(c + d*x) + C*cos(c + d*x)**2) 
*sec(c + d*x)**2, x)
 
3.11.18.7 Maxima [F]

\[ \int \sqrt {a+b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c 
)^2,x, algorithm="maxima")
 
output
integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a) 
*sec(d*x + c)^2, x)
 
3.11.18.8 Giac [F]

\[ \int \sqrt {a+b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c 
)^2,x, algorithm="giac")
 
output
integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a) 
*sec(d*x + c)^2, x)
 
3.11.18.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\int \frac {\sqrt {a+b\,\cos \left (c+d\,x\right )}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\cos \left (c+d\,x\right )}^2} \,d x \]

input
int(((a + b*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/c 
os(c + d*x)^2,x)
 
output
int(((a + b*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/c 
os(c + d*x)^2, x)